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Abstract: In the present paper,we investigate the learning rates of regularized regression with sample dependent
hypothesis and p-loss. We show the robustness of the solutions with respect to the probability distributions, with
which we provide the sample error. Also,we show the approximation error with a kind of K —functional whose
convergence rates are described in possibility. Finally, we show the explicit learning rates in cases of the norm
regularization and the coefficient regularization. The results show that the parameters p have influences on the

learning rates.
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1 Introduction

It is known that the performance of the regularized re-
gression with least square loss and sample dependent
hypothesis spaces has been studied fully (see, e.g.,
[5, 7, 12, 15, 18, 20, 22, 23, 24, 25, 27]). The aim
of the present paper is to give an investigation on the
learning rates of regularized regression with p-loss.

Let X be a compact metric space and Y = R.
Let p(x,y) = p(y|z)px(x) be a fixed but unknown
Borel probability distribution on Z := X x Y with
px (x) being the marginal distribution and p(y|z) the
conditional probability distribution.

Let V() : R — R, be a convex loss function
and &, v(f) = [, V(ly — f(x)|) dp be the integral
error. The minimizer f7, defined by

fv(x) = argmin&, v (f)

over all measurable functions controls the relation be-
tween = and y. In particular, if V(t) = t2 is the
least square loss, then, fy: is exactly the regression
function f,(z) = E(ylz) = [y v dp(y|z)(see [5]).
The task of learning theory is to find, from the sample
z = (z)", = ((x5,y:))™, € Z™ drawn indepen-
dent and identically according to the unknown prob-
ability distribution p(x,y), a function f, which is a
good approximation of f7;.

A way of obtaining f, is the following empirical
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Tikhonov regularization regressions (see e.g. [6, 8])

1 m
feavin = argmln EZV lyi — f(zi)])
=1

+AQ(f)), (1

where A are positive constants called the regularized
parameters, H is a hypothesis space which is, in most
of the case, a function space consisting of functions
on X with norm || - ||, Q(f) : H — R is the penalty
function called regularizer.

When H are reproducing kernel
spaces(RKHS)(see [1, 2]), the Ilearning
have been studied by many papers (see e.g.
[3, 4, 6, 8, 11, 18 23)). In particular, for
V(t) = Vp(t) = |t|P, [3] shows that

Hilbert
rates

Epty (Fothtae) = Epvy (i) (m = +00) (@)
if [,|ylP dp < +oo, 'm — +o0 and p* =
max{2p, p*}.

It is necessary for us to show the convergence
rates for (2).

Let K(z,y) = K;(y) : X x X — R be continu-
ous, symmetric and positive semi-definite, i.e., for any
finite set of distinct points X = {z1,x2, -, 2} C
X, the matrix K¢ v = (K(mz,x]))i] 1 18 positive
semi-definite. Then we call K (z,y) a Mercer kernel
on X.

Let X = {x1, @2, -+, T} C X be taken
from the sample set z = {(z;,v;)}",. Then, we can
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define on H,; v =

{fa(z) = Z Qj

(1,09, 7am)T € R™} an inner product (- ">KY
on My x satisfying (Ky, K)o 5 = K(t,5) fort, s €
X which yields

Hfoz”?g}

and the reproducing property (see[20])

:E>KX7
Take H = Hj < in (1). Then, we have the fol-
lowing sample dependent framework with a general
loss V()

K (z) :a =

RS B
= KX7X04

r e X.

fz,)\,V - faz7>\ v
m
Qv = alélli%%l ; ’yl fa z)‘)
+A Q(fa)). )
The integral framework with respect to (4) is
fp,)\,V fap,AA,V?
apav = min (Ev(fa) +AQ(f)). O

It has been pointed by [25] and [26] that, the error
analysis for algorithm (4) is essentially different from
and more difficult than that for (1) since the dependent
of H KX On the samples X . For example, when we
estimate the error with capacity approach, the sample
dependent nature of the algorithm will lead an extra
error term called hypothesis error which makes the
analysis become more complexity. When V(¢) are
Lipschitz loss,the convergence analysis for scheme (4)
has been studied in ([10, 11, 14]). When Q(f,) =

Z o? and V (t) = 2, the learning rates are estimated

[21]When Qfa) = @' Kyx aand V(i) =
t2, the learmng rates are estimated in [24]; When

Qfa) =
shown in [17] and [26];[22] provides the learning rates

Z |oj| and V' (t) = #2, the learning rates are

for V() = t? and Q(f,) = Z lai]P(1 < p < 2).
When V(t) = |t|P and Q(f,) = Hfa||K, we have
fz,A,p fazy,\$p7
azap = arg a%}{% ; i — falzi)P
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When V (t) = [¢t|P and Q(f,) = m in: ||, we
i=1

have

fz*)\,p fOL;A"p7
1 m
ot = arg min (— i — folz)|P
ZA,p ga@}%m( Zz:l 1y — fa(zi)]
2
FAmY il (7
i=1
Since V(t) = |t|P is local Lipschitz loss,the

method used in [10] and [13] can not be used. The
integral operator approach will not be used as well
since the explicit solutions of (6) and (7) can not be
obtained,we need to show the performance in another
way.

In the present paper, we define the general integral
regularized framework with respect to scheme (6) and
(7) respectively by
(p)

(p) .—
ap = a)\,p

= arg min (§(fa) + Ao’ Kxx a), (8)

and

(p)y*

(0)* .
o =y,

P

m
= arg min (P (fa) +Am Y laif). )
a i=1

where £P)( = [, |y — f(z)’dp. Take

f,ﬁ” = argmin & (f), (10)
where the minimize is taken over all the measur-
able functions. Define the empirical measure p,(z,y)
corresponding to the sample z and the bounded
p—measurable function f(z,y) on Z by

[, S o= 03 s

1)

Let LP(px) denote the class of px—integrable
functions f(x) which satisfy

1
£l = ([ 1f@)F dpx)¥ < +oc.
Then, we know || - [[1r(,) satisfies, for any f,g €
LP(px),
W lze oy = gllzeeool < 11 = gllzrox)-
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It follows for f,g € LP(px) that, for any f,g €
LP(px),
1 1
EP ()7 = P97l < Nf = gllwgen)- (12)

Let ®™ be the m—dimensional Euclidean space,
f(z) : R™ — R be a differentiable convex function
and Vf(x) = (88—{1, e 8?6—];) be the usual gradient.
Then,

f@') = f(z) 2 (Vf(z), 2’

A well known result is, if f(z) is a convex function
on X, then z is the minimal value point of f(z) on
X if and only if V f(x¢) = 0.

Since X is a compact set,we have by the repro-
ducing property (3) that for any f € H ;. %

@< 1l x < 1Kl x
= fllgx > VE(z,2).

It follows by [y dpx = 1 that

£ = ([ 1F@PPdpx)

—x), z,2' € R™. (13)

3=

<Hlflex (4

Then, by the definitions of oz,()p ) ,(12) and (14) we have

1 1
ED (fayr,)? — EP(FP)

< EP Jaun,)? = EP(fo0)7)
+5f()p)(fa]<gp>)% - 5;()p)(fép))%
< ||faz,)\,p - fa;p) ||Lp(pX)
+EP (£ )7 — EP ()7
<

k”faz,)\,p - fa;p) HK,Y
1 1
+EP (f)r = PSP (a3)

On the other hand, define on ®™ (m > 1) the norm

m
lal* =" |ai* =a" ,a = (a1,a2, - am) " € R,
i=1
and for a = (ay, a9, ,am,) € N™ and b =
(by, ba, -+, by) | € R™ define the inner product
m
(a,b) = Zai bi=a' b.
i=1
Then,
m
max |fo ()] = glglgakff(wk,x)\
< kvmlal. (16)
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It follows by the definitions of az(;p )’*, (12) and (16)
that

1 1
5,§p)(fa* )P _g(P)( fgp))p

z,\,p P

< |ED@(F . s g :
= ’ P (faz’/\,p) 14 (fa;ﬂ)v*) ’
1 1
+5,gp)(fa;p),*)" - 5,gp)(f,§p))1“
< kvmlaly, — ol

1 1
+EP (f o0 )7 = EP (). (7)

Then, to bound the learning rates of the algorithms
(6 ) and (7), we need to provide the convergence
rates for the sample errors || fo, , , — fa(pp) ;e x and

*
llok . — aép ) || and,bound the convergence rates for

2,A.p
the approximation errors Eép)(f a(p))% - /gp)( ng))%
P

and Eép)(fa@),*)% - Ef(;p)( ,gp))%.Along this line,we
bound the leparning errors for algorithm (6) and algo-
rithm (7).

The learning rates of algorithm (6) are estimated
as following Theorem 1.

Theorem 1 Let p > 1, o ), be defined as in (6),
Mercer kernel K (x,y) satisfy

sup | K(z,y)| < +o0,
(z,y)eX xX

p(z,y) satisfy

plp = / lyl” dp < +o0.
X

Then, there is a constant c,, depending only on p such
that for any 0 < § < 1, with confidence 1 — 24, there
holds
1 1
EP (fan,)? = EP ()
LB N)

< (CP|P|p)pp%1 kp (18)
- ) Amd” 0 ’
where k = sup |K(x,y)|, ¢* = min(%, l) and
(z,y)eX x X P

1
KGN = [ g EP(a) +Mfall5)]?
1
_gép)(fp(P))p
and

E(f):/me(xl,l?,’",l‘m)dpx(a:l)-'-dpx(a:m),
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Also, the learning rates of algorithm (7) are estimated
as following Theorem 2.

Theorem 2 Let p > 1,042)\4) be defined as in (7),

Mercer kernel K (x,y) satisfy sup  |K(z,y)| <
(z,y)eX xX

+o0, p(x,y) satisfy |pl, = [y |y|Pdp < +oc. Then,
there is a constant ¢, depending only on p such that
forany 0 < § < 1, with confidence 1 — 26, there holds

)% _g(p)(f(p)ﬁ

g,gp)(fa* p \Jp

z,\,p

* (p)
cplplp p_Tl kp E(K*(fs ", )
< (F5) Tt 5

,(19)

where

inf (£0(f) + mA[la]})]?

aEeR™

1
_gép)<f;§p)) »

K*(fp(zp)a)‘) = {

Theorem 1 and Theorem 2 will be proved in Sec-
tion 3.

It seems that the estimates (18) and (19) are
neither explicit nor completeness since the parts
EEUPN) g BE (P N)

5 5

and . However,if £ is in
the range of integral operator L (f) defined by

Li(f.o) = [ f@K(a)dpx(w). v eX,
then,we have the following explicit estimates for (18).

Theorem 3 Let p > 1,a. ), be defined as in (6),
Mercer kernel K (x,y) satisfy

sup  |K(z,y)| < +oo, p(z,y) satisfy |pl, =
(z,y)eX x X

Ix lylP dp < +o0. If there is a function ¢ € L*(px)

such that f,gp) (x) = Lg(p,x), then, there is a con-

stant ¢, depending only on p such that for any 0 <
0 < 1, with confidence 1 — 26, there holds

1 1
ED (farn,)? — EP(FPN)P

S(M)”% hp_
1) Amd
T e R 2] (20)
where
v o= /XsO(y)QK(y,y)dpx(y),
poo= /X/X@(ﬂf)@(y)K(w,y) dpx (x)dpx (y).
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Also, we provide an explicit estimate for (19) by
the following Theorem 4.

Theorem 4 Let p > 1,042/\17

Mercer kernel K (x,y) satisfy

be defined as in (7),

sup  |K(z,y)| <
(z,y)eX xX

+oo, p(x,y) satisfy |ply = [x |ylP dp < +oo. If
there is a function p € L*(px) such that f,gp) (x) =
L (@, ), then, there is a constant ¢, depending only
on p such that for any 0 < 6 < 1, with confidence
1 — 26, there holds

1 1

&P (foz, )P = EP D)
cplplpy B kp
< ( ) ) x Amd”

1 V— U
+g(k\/ - + {Alellzepy). @D

2 Some lemmas

To show Theorem 1-Theorem 4,we need some lem-
mas.

Lemma$ Let a}(,p ) be the unique solution of scheme

(8). Then, for any f € H ., holds
DN f i
= o [ =L@
xsgn(y — f o () Kao() dp) ez (22)
and

EP (£ ) < lplp- (23)

If a](gp )% is the unique solution of scheme (9), then,

2\ m alP)*

p
= p/Z |y—fa;p>,*(x)|p_1
xsgn(y = f o+ (2)) Bx(z) dp  (24)

and
EP (£ 00+) < 1plp, (25)
where and in the whole paper we write
KY(‘I.) - (K(xh ‘T)7 K(x27 x)v T K(.Z'm, 1’))
and for a vector function f(z) =
(fi(x), -+, fm(x))" and a real function a(z)

on X we define

f(@)a(@) = (i(@)a(@), -, fm(@)a(z)
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and

z) dpx

/. f@)a
/f1

Proof. Since A > 0, HfaH
vex functions about « on ﬂ%m, Vp(t) = [t|? is a strict
convex function on R, we know (8) and (9) are strict
convex optimization problems about «c on ", Both

o and o) are uniqueness.

We now show (22). By the Theorem 4.2.1 in [9]
we have the following results:

Let A : R? — RY be an affine mapping (Ax =
Agx + b) with Ag linear and b € R? and let g be a
finite convex function on 1. Then,

Va(go A)(z)
forall x € 39, where A{; is the adjoint of Ay.
Since |y — fo(x)]P =

r) dpx,-

[ fn@) a

+ and [||? are strict con-

= AS vAzg(Ax) (26)

ly — K (x)a|P, by taking

Ay = K+/(x) and b = y in (26), we have
Valy = fa@)l” = —ply — Kx(z)af™!
xsgn(y — fa()) Kx(x).
Since al(,p ) is the minimizer of (8) and
Vala! Kxx )l _.» =2 Kgx o),
we have
0 = Vol [ =L@l dp)l_
+2\ Ky x alf)
= [ Valy= L@ do+2X Kx x off
= [ =L@ xsgn(y— £, (@)
xK~(x) dp + 2\ K 5 al(f).
Hence,

2\ Ky X Oéz(jp)

=0 [ =L@ sgn(y = f 0 (@)
Z P P

xK+(x) dp. (27)
By the definition of the matrix K~  we have
2>‘(fa;p) (m1)7 ) fa;p) (mm))
E-ISSN: 2224-2880 193
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P =0 @P " xsgn(y - £ 0 (2)

/|y f(p) P

xsgn(y — fa;p( z)) Ky(zm) dp).

X K (z1) dp, - -
(28)

By the reproducing property (3) we have f ) (z;) =
D

<fa(P)7Kl“i>K,Y and
5%
Ky(x;) = (Kg, Ky Kk 1=1,2,---,m.
Then, (28) yields
2)‘<<fa§,”> Kz e szh(,y)

P = F 0 @F ™ < sgn(y = 1,0 ()

Ko () dp, K. / [y = fo(
xsgn(y—faép( ) Ko () dp, xm>Ky)-
Therefore, we have for¢ = 1,2, - - -, m, that
2M(f 0 K%
p / [y =L@ P " x sgn(y = f,0(2)
Ka() dp, Ku) e %
(22) then holds.

We now show (24). Since 041(9'0 )

lution of (9),we have

is the unique so-

Vol [ v= 1@ dp)]_ -
+2xm ||a||?)

| _aﬂ)*

= —P/ VAP NOR ()P~ % sgn(y = f 0.+ (2))
x K (x) dp + 2/\ma§) )*,

Therefore, (24) holds.
Take o = 0 in (8),we have (23).Take o = 0 in
(9),we have (25). O

Lemma 6 Forany f,g € H .~ there holds

2 2
1% — N9l =
= 2f -9, Qrx+If —dllkx @9
and for any a,b € R™ there holds
lal® = [IBl* = 2(a = b, b) + [la —b]*.  (30)
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Proof. (29) and (30) may be obtained by the parallel-
ogram identity. O

We now show the following robustness for
schemes (8) and (9).

Lemma 7 Let p and v be two given Borel probabil-
ity distributions on Z. Then, We have the following
robustness for the solutions of (8) and (9):

(1) ifa,(gp) and 041(]) are the solutions of (8) with
respect to p and vy respectively,then,

Hfaém - fa;w) I %

< P L= s, @1 sonty ~ £, ()
A z Qp Qp
x K(-) dp
~ [y L0 @ x sgn(y = £,(2)
Z P P
o) |, < 3D
(2) ifaj(f)’* and aj(ﬁ)’* are the solutions of (9)

with respect to p and ~y respectively,then,

lag ) — afr|
< )\mH/ [y = \p_lsgn(y—f%(op),*(ﬂ?))
Kx(x) dp
/ [y = f oo (@) tx sgn(y = f (@)
x K (x dy”. (32)
Proof. Proof of formula (31). Since (|t|P)

p|t|P~Lsgn(t),we have by the convexity of the func-
tion |¢|P that
2P — [ylP > plyP~sgn(y) (= —y), =,y € R.(33)

Then, the reproducing property gives

foor @) = fop (@) = <Kx7fa;7) S (p>> »TEX

and
|y - fal(y’v) (m)‘p - ‘y - faép) (x)|p
= ply—Ffe ()" sgn(y — fop (@)
X(fop (@) = fn (2))
= <fa§7w) —fop —Ply = o ()P~
xsgnly = £ (@) K)o G4
E-ISSN: 2224-2880 194
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and hence (34) gives
| = to@Pdy = [ 1= fp@Pd
Z p A P
> <fam —f 0 —P/ ly = £ (@)
P P 7 P
Ko() dy), <

Take f = fa(p) and g = fa(”) into (29). Then,
P P

xsgnly — £ (@)

2 2
1o ez = 1o ke
= Af,o —foo folkx
2
Hifo = foolkx (35)

(35) gives

(ESP)(fOCI(ﬂ)) + A Hfoa,(ﬂ) H?{,Y) = (
A £ %)

EP(f, )

> (fo0 = f o —p/ ly—f o (@)
p p z P
ngn(y - faj(pp) (x))Kx() d’Y>K,Y
20 (fo0 = Lo Lok x
2
Ao = Tl x
= <fa(v) —f s 2X [0 —p/ ly—f o ()P
P p P A p
xsgn(y — f o (2)) Ka(") d7>K,y
AN = fa;wH?Kj
= p{f, o0 = f 0> / y— £ o ()P
P p VA P
xsgn(y — [, (@) Ka() dp
~ [ = £ @P ™ sgnly = £ (@)
Z P P
XKI() d’Y>K,Y
A N fyp = fu I3 % (36)

where, in the last deduction, we have used (22). By

the definitions of ozép ) and ap)

(EP(F,00) + Ao ) — (
A l5x) <0,

we have

EP(f )

which and (36) give

2
Moo = Foollkx

Issue 2, Volume 12, February 2013



WSEAS TRANSACTIONS on MATHEMATICS

< p{f w0 = f o / ly = f @)
P P VA P
ngn(y - fa;ﬂ) ('r)) K:c() dp
[ = @ X sgn(y = £ (@)
Kx() d7>K,Y
< p”f (ﬂ _f (W)HKY
] / v L@ sgnly = £ 40 (2)
1) dp
- /Z 9= o @ X sgn(y = £ (@)
Ko() dvl -
(31) thus holds.

Proof of the formula (32). The equality
foon (@) = o) = (Bx (@), af* — )
and the inequality (33) yield
[y = Fooo @ = ly = f .- @)
ply = f (@)

P

X (f (@) =
— <a1()w),*

Y

x sgn(y = £ . ()
Fop (2))
—afh*, —ply - f o (2) i

xsgn(y = f .- (2)) Ex(2)). (37)

From (37) we get that
/ ly—f <w>,*(95)\pd7—/ ly—1f, <p>,*($)|pd’7

> (al) — ol /\Z/ f(p) ()PP~
() Kx(x) dv).

ngn(y - faéﬂ )k

Taking a = ozgY)’

have

and b = oz;(, 2* into (30), we

2 2
lag* 1% = g
2

= 2<a§7)’* _ az()p),*’ ay(?p),*> + ”al()w),* _ aI(Jp),*| )

Above two equalities give

(EP(F ) + Am [laf[)
~(EP L)+ Am af)

> (@ = = [y L@
ngn(y—fa;m,*( z))Kx(x)dv)
E-ISSN: 2224-2880 195
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= p<0‘§77)’* - 04,(;”)’*,/2 ly —f ép>,*($)|p71

xsgn(y — [ .+ (2)) Ex(x)dp
[ W= dp @ sgny — 1,0 (0)
Z P P
xKx(z) dv)
+ Am ol — ol (38)

where, in the last deduction, we have used (24). By
() (7).*

the definitions of oy """ and ayp’’”" we have
(5§p)(fa;w,*) + Amlal0 %) - (5§p)(faz<3p>,*)
+am lal[?) < 0
which and (36) give
* *(12
Am Ha(p) _ a}(?v), [
< plad) — ol /Z ly — Fo AP

xsgn(y = f . (2)) Kx(z) dp

Al
VA p

(2)) Kx(x) dv)

xsgn(y — f .-

< plaf = o<l [ = fp @I
xsgn(y — f . (2)) Kx(z) dp
—/ Y= F o (@) X sgnly = f - (@)
Z P P
(32) then holds.

We now give an estimate for the sample error

||faz,)\,p -

f aép) || KX*
Lemma8 Letp > 1, ozép) and o ), be defined as in
(8) and (6) respectively. Then,there is a positive con-
stant c,, such that, for any 0 < 6 < 1, with confidence
1 -9, holds

_ cplplp PTTI kp
fa;P)HK,X < (7(5 ) X d

Hfaz,)\,p - * * (39)
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Proof. Notice the following large number law (see
[3]): Let Z be a measurable space,p be a distribution

on Z, H be a Hilbert space and f : Z — H be a mea-
surable function with | fl|, = (E(||f||‘}{))% < 400
for g € (1,400). We write q* min(1/2, (q —
1)/q).Then,there exists a universal constant c; > 0
such that for all e > 0 and all m > 1 we have

PTObm((Zl,ZQ, e zm) € 2™

||f2fzz Pl 2 ) < eg(1Llaye
It follows that

Pm((zl,22,~-- m) € Z™:

||f2le Py <) 21— ¢g(1laye

and for any 0 < § < 1,with confidence 1 — 4, holds

I 2060 - Bl < () e o

Denoted by
f(z) = f(z,y)

= ly=Fp@"  sgnly = £, (x)) Ka().

Then,
£l =l Fyp@)P ™K lwo)
< Ky =L@ 1)

Take g = ]%. Then, by (23), one has

Q=

171 = ([ 15 1dp)
Z
1 1
< k([ 1y = 1,0 @[Pdpx)s < kol @42)
It follows by (40) and (42) that there is a positive con-

stant ¢, depending only upon p such that, with confi-
dence 1 — 6, there holds

1] =1 @ sgn(y = £(@)

XKy (') dp
_72 yi — f (p) (za)[P™ sgn( f (p)(xz))
XKxi(')HK
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IN

H*Zf Ti, Yi)

sup

feHK, ||f||q<k‘/7|p

—/ f(z,y)dpll
Z

clolp\ 55 K
Thus (43) together with (31) yield (39). Also, the sam-
(p),*

ple error ||ay
Lemma 9.

(43)

—aj ) |l is bounded as the following

Lemma9 Letp > 1, a(p) and o, Ap be defined as
in (9) and (7) respectively. Then, there is a positive
constant cy, such that, for any 0 < 6 < 1, with confi-
dence 1 — 6, there holds

p=1
atal < (2F)

Proof. Take

kp
w1
mq +§

) (44)

£(z) = &=,y
= ly- fa;p),*(ﬂﬁ)\p_l x sgn(y — .+ ()
‘(). (45)

Then, {(2) : Z — R™ and

I = o= Lo P S Koy
<kvmly = f @) 46)
It follows that
el = ([ le@ldp)s
= (| ly= L - @Pdp)
< kvl @)

We know by (40) and (47) that,there is a posi-
tive constant ¢, depending only upon p such that, with
confidence 1 — 4, holds

|| /Z 9= F e @ sgnly = £ (@)

(') dp
_72 |yl f (p) m1)|p !
ngn(yz‘—f o (23)) Ka, O]
< sup ||*Zf T, Yi) /f z, y)dp||
\|f||q<kf\p\z§1
< (Cp|p|P)T1 k (48)
- 5 md =3

Issue 2, Volume 12, February 2013



WSEAS TRANSACTIONS on MATHEMATICS

Inequality (48) together with (32) yield (44).

3 Proof of the Results

Proof of (18). By (14),(12) and the definition of ")
we have

1 1
glgp)(faz’k’p)p _ g{(}p)(f‘()p))p
Bll forenp = Lo e + (EP(FL00)
p P
1
_ gé@(fp(p))p

inf (
acER™

IA

1

A f 0 % %)

= Kllfarn, = Fap iz + (
1 1

A fall% 5))” = EP(FP)?

— /chaz,A,p—faép)HK,y%—K(flgp),)\)
= A+ B.

EP (fa)

(49)

On the other hand, we have the following Propo-
sition 10.

Proposition 10 ([16]) Let (2, F, P) be a probability
space,z = (z;)iy € Q™ be samples drawn indepen-
dently and identically (i.i.d.) according to px. A(z)
and B(z) are functions about z on Q. If there are
€1 > 0,e9 > 0 such that for 0 < § < 1,with confi-

dence 1 — 6,holds
A(z) <e1, B(z) <eq,

then, with confidence 1 — 26,holds
A(z) 4+ B(z) < &1+ ea. (50)

We now estimate B. By the Markov inequality we
have

Prob™((z1,22,+,2m) € Z™: B > ¢)
_ B(B) _ E(K(f"),))
S — 5 )

Therefore,

Prob™((z1,22, - ,2m) € Z™ : B <¢)
E(E (). N
£

>1-

(5D

(p)
Take 7(1((](" A~ . Then, ¢ = 7E(K( 7))

follows by (51) that, with confidence 1 — 6, holds

It

5 < BEE).N)

< 5 (52)
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(52),(39) and Proposition 10 give (18).
We now show (19). Also, by (14),(12) and the
definition of f, ) we have
1
b= glgp)(fﬁ()p))p
kvmllat y, — o]
1 1
+EP(f., ()7 —gp(,p)(f,gp))”
bvmlla s, — ol | + (EP (£, )
1
+Allf| )P EP(fP)
= kymlla,, — "]

1
5[()17) (faz)\ ) P

IA

IN

3=

+(,int (EP (1) +AHaHQ>)5 _ P (S0
= k:flla“p (o) (f%),0)
= C+D. (53)

Same way as the proof of (52) shows that, with
confidence 1 — 4, holds

E(K*(f),))

D < 54
< 5 (54)
and by (44) we have
C < kVmllal) - a7
Cp pp%l k2p‘P‘p
<(2) 7 5o (55)

(54),(53),(55) and Proposition 10 yield (19).
1
Proof of (20) and (21). Let L}, be the linear op-
1
o Ly = L. Then,

Hix = Li(L*(px)) is the usual reproducing kernel
Hilbert space [1, 2, 19]. Let {¢,(z)}./> be an or-
thonormal basis of L?(px) which are the eigenfunc-
tions of operator Ly corresponding to eigenvalues
{An},r29. Then, by [5] we know

Hr

- o

On the other hand,the Mercer theorem (see [6])
gives

1
erator on L?(px) satisfying L3
1

= i VAnCntn () | i cn < +OO} :
n=1 n=1

z,y € X. (56)

+o0o
n=1
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It follows that
Li(L*(px))

n=1 n=1

and LK(LQ(,O)()) C Hg. Choose a* = {O‘z}?ﬂ =
{%}?:1 Then, by (14) we know if f(z) =
Lk (p,x), then,

(/ | i ap K (wy, @) = f(w)]pdpm))%
= k:”— Z o(xk) K (v, )
_/XQO(U) (u, ~)dpx(u)||K,Y' (57)

It follows by (K, K) k = K(x,y) and (57) that

2

Lr(px)

|3 oiko ) - 1)
H* Z o(xr) K (zk, -)

/go

kzmm

=7ﬁzzwu (@)

k=1j5=1
2k%

—&—kz/X/ch w)p(v)K

Therefore, by the Markov inequality we have

E(/ ‘iaZK(a}k,x) -

,)dpx (u)

I«
K,X

x/mx])

(v)dpx (v)

£ dpx(a))”

= kE(‘lizSO xy) K (v, -)
_/Xgo(u)K(u,.)de u H 7)5
- ( [ ZZsoxk K (xy, ;)
k=1j=1
_7Z(p o / K (x, v)e(v)dpx (v)
+ /X /X so@)so(mmu,v)dpx(u)dpx(v)}>%
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L 7 0 9) SER IR SEAS)
k=1j=1
xdpx (1) - - - dpx (xm)
(2 #lan) [ K)ol (v)
xdpx x1) dpx(wm)

K(u v)dpx(U)dpx(v))%

K (u, v)dpx (u)dpx (v)

* fe Jsts
- (-] /
m/ oY) K (y,y)dpx (y)
7/)(/)(@ z)p(y) K (z,y)

xdpx (x)dpx(y)) :

YyTB (58)
m

= k

Further, the Markov inequality gives

1

(Ilfa 120 < (B(lurl25)) ™
( Z 90 xz Qn'uxj)‘,o(xj)))ﬁ

<
i,0=1
:( / S el K (i z)eley)
1,5=1i#]
xdpx(ﬂcl) ~dpx (Tm)

1

b [ Zm dpx(21)- - dpx (2)) ™

- (22 fsomien

+— /w K(x,z)dpx (x ))
< (/. @) K (w,2)dpx ()™ = %5, (59

(y)dpx (x)dpx (y)

where we have used the inequality K(z,y) <

VE(x,z)K(y,y). Same way yields

ity < (1220 %
E([loa|7) < (==t ) . (60)

m

We now show (20). By (12),(58),(59) and the fact
Hrx C LP(px) we have

K(f®,))
(

< B o)+ Al 12 5] = EP(S)3
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2
< EP(far)? + Nl far I = EP (S
2
< Mo = Sy + A0 far e 6D

By (58),(59) and (61) we have

< BWVZR L 6

E(K(f,\) N

p

(62) and (18) yield (20).
We now show (21).By (12),(58),(60) and the fact
Hrx C LP(px) we have

K*(fP,N)

L 1
£ (ar) +mAla”|2]” - P (703

IN

< ED(far)? +mENT |0 — EP (1)
< Nfar = I oon) + (mA)F[la*[[7. (63)
By (60),(58)and (63) we have
B(K*(f®,\)
e L

Therefore, (64)and (19) yield (21).
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